时间:2017年07月17日 浏览数:
监控视频技术经历了模拟时代,进入了数字化时代。在数字化监控的进程中,目前正处在从数字化、网络化、高清化向智能化的发展过程中。其中智能化的监控视频分析是当前重点发展方向之一,人们希望通过智能分析取代大量繁重的人工对监控视频内容的察看、分析和总结。
智能化涉及到对监控视频图像的种种处理,从技术的层面上大致可以分为三个层次:注重于像素或像块的视频图像处理,注重于图像特征和目标的视频图像分析,注重于图像内容语义的智能分析。
在这三个层次中,显然智能监控视频分析是我们终的目标,替代人工对视频监控内容的观察、分析和判断,甚至比我们人类在某些方面更加准确和快捷。但是,要达到这一目标,必须向智能分析系统提供尽可能清楚的视频图像,尽可能准确的目标划分和识别的结果,我们将这些技术称之为智能视频分析的基础技术,即视频图像处理和分析。如果所提供的图像达不到这样的要求,则很难指望智能分析系统会获得正确的分析结果。因此,我们说智能视频分析固然重要,智能分析的具体方法固然重要,但是提供优质视频图像的基础技术在当前视频分析智能化的起始发展阶段尤为重要。
目前从应用的角度看,智能视频分析虽然取得了长足的进展,但仍然有太多的内容需要研究和开发,智能视频分析技术尚处于视频处理和视频分析的“初级阶段”,这一部分是当下实际应用场合中重点关注的内容。基础的监控视频处理和分析技术包含很多的方面,除了经典的视频处理技术如图像增强、图像去噪等技术外,目前大家较为关注的主要有图像去雾,动态范围扩展,超分辨率重建,车牌识别,人脸识别,……,等多项技术。
去雾增透处理
由于大气散射作用,雾天天气条件下获取的视频图像较为模糊,严重地影响着图像的视觉效果。其原因主要在于目标光线在传播过程中遭到雾气的衰减而导致了图像细节的丢失,清晰度不够;周围环境光的参与造成了图像颜色的失真,色调平淡。
为了改善这类雾天图像,可采取视频去雾增透技术(简称透雾技术),将因雾气和灰尘等导致朦胧不清的图像变得清晰,发掘出更多的图像所包含的信息,为下一步对图像的智能分析应用提供良好的条件。
目前的透雾处理方法主要分为两类:雾天图像增强和雾天图像复原。雾天图像增强方法现对比较简单,它不考虑图像降质原因,只针对图像的色彩进行处理,能有效地提高雾天图像的对比度,突出图像的细节,改善图像的视觉效果,但可能会造成一定的信息损失。
雾天图像复原针对雾天图像质量退化的机理,建立雾气图像退化模型,然后用图像复原的方法,对雾天退化图像进行复原,补偿退化过程造成的失真,获得对无雾图像的优估计,从而改善雾天图像质量。这种方法针对性强,得到的去雾效果自然,信息损失小,处理的关键是模型中参数的估计。
暗光图像的处理
夜晚场景下采集的图像由于光照强度不足,导致图像亮度及对比度降低,丢失颜色等细节信息,增加了图像的噪声,从而降低了图像质量,严重影响了图像的使用和进一步的智能分析处理。目前比较流行的暗光图像处理的方法是Retinex算法,从给定的图像中分离出亮度图像和反射图像,在彩色恒定的条件下,通过改变亮度图像和反射图像在原图像中的比例来达到增强暗光图像的目的。但这种方法的计算量非常大,很难应用于实时处理。
车牌识别
车牌识别技术主要包括两类,一类是相对静止的卡口车牌识别,另一类是车辆处于运动状态的车牌识别。
对于停车场卡口类的车牌识别,由于车辆的静止或速度较慢,再加上车辆对检测的配合,因而相对容易,识别率也很高。
对于行驶中车辆的牌照识别,如道路上车辆、甚至是逃逸的车辆等,由于复杂的环境、高速的运动、其他车辆的遮挡等不利因素存在,大大增加了车牌分割和车号识别的技术难度。
(转自安防知识网)